Dennis Caceta

Uma série temporal é um conjunto de observações ordenadas e que apresentam dependência baseada no tempo. Uma grande quantidade de fenômenos pode ser enquadrada nesta categoria.

A maneira de analisar uma série temporal é através da sua partição em seus componentes de tendência, ciclo e sazonalidade, sendo que:

- A tendência indicará o comportamento "de longo prazo", isto é, se ela cresce, decresce ou permanece estável e, em qual velocidade isto acontece;
- Os ciclos são as oscilações (crescimento e decrescimento) das séries que acontecem repetidamente;
- A sazonalidade corresponde às oscilações de subida-queda e que sempre ocorrem a cada determinado período de tempo.

A depender dos componentes existentes na série temporal avaliada, existirá um ou mais métodos de previsão, melhor adequados a cada situação.

Assim, por exemplo, a média móvel que prediz novos eventos baseando-se no valor médio de observações consecutivas é adequada quando não se observa tendência. Neste caso, ainda que haja a existência de ciclo, esta metodologia continua sendo útil desde que, o comprimento da média (quantidade de elementos presentes no cálculo) seja considerado igual ao comprimento do ciclo.

Neste âmbito, as técnicas para suavização de dados são aplicadas nas séries temporais com o objetivo de remover aleatoriedades, considerando a existência (ou não) de tendências e/ou sazonalidade e obtenção de previsões de curto prazo.

No caso da movimentação histórica (em toneladas) do Porto de Santos e com base no período entre os anos de 2018 e 2023, pode ser observada tanto a sazonalidade (anual) bem como a existência de tendência (crescente ou decrescente) dentre os meses, como demonstrado na figura 1.

Figura 1. Movimentação histórica (2018-2023) do Porto de Santos

Devido a existência destes 2 componentes, decidiu-se utilizar o método de suavização multiplicativo de Holt-Winters para modelar o evento e obter as previsões de movimentação para o ano de 2024 pois observa-se que, a amplitude da variação sazonal (variação entre os meses de maior e menor volume em um mesmo ano) cresce ao longo dos ciclos/anos. A tabela 2 demonstra a variação desta amplitude.

Ano	Maior	Menor	Amplitude	
2018	12.482.543	8.996.324	3.486.219	
2019	12.788.883	9.053.996	3.734.887	
2020	13.732.925	8.313.047	5.419.878	
2021	15.165.555	9.192.069	5.973.486	
2022	15.160.123	10.699.576	4.460.547	
2023	16.211.511	10.195.677	6.015.834	

Tabela 2. Variação de amplitude dentre meses de um mesmo ciclo

As equações, de 1 a 4, trazem os métodos de cálculo para a previsão de n períodos (\hat{A}_t) no tempo t, bem como para estimar o nível, tendência e sazonalidade, com base em suas constantes de suavização (α, β, γ) adotados neste modelo, onde, p é o período sazonal:

$$\hat{A}t = (L_{t-1} + T_{t-1})S_{t-p}$$
 (1)

$$L_{t} = \alpha \frac{A_{t}}{S_{t-p}} + (1-\alpha)(L_{t-1} + T_{t-1}); \ 0 \le \alpha \le 1$$
 (2)

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta) T_{t-1}; 0 \le \beta \le 1$$
 (3)

$$S_{t} = \gamma \frac{Z_{t}}{L_{t}} + (1 - \gamma) S_{t-p}; \qquad 0 \le \gamma \le 1$$
 (4)

Ajustando os pesos das constantes para obtenção dos menores erros (Desvio Absoluto Médio – MAD, Erro Absoluto Percentual Médio – MAPE e Erro Quadrático Médio – MSE, equações 5 a 7), obteve-se as previsões apresentadas no gráfico 1.

$$MAD = \sum_{t=1}^{n} \dot{c} \dot{c} \dot{c}$$
 (5)

MAPE =
$$\sum_{t=1}^{n} \ddot{c} \ddot{c} x 100$$
 (6)

$$MSE = \sum_{i=1}^{n} \ddot{c} \ddot{c} \ddot{c} \tag{7}$$

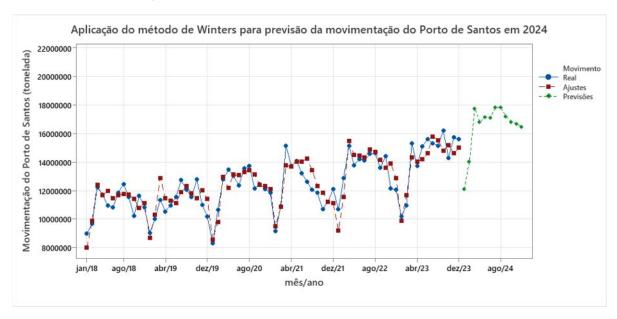


Gráfico1. Aplicação do método de Holt-Winters para previsão da movimentação 2024 do Porto de Santos

A Autoridade Portuária de Santos (APS) publicou, respectivamente em 23/02/2024 e 28/03/2024, os mensários estatísticos referentes aos atingimentos dos meses de janeiro e fevereiro deste ano e, através deles, pode-se comparar a aderência das previsões como descreve o quadro1.

	Previsão		Real		Desvio (mês)		Desvio (acumlado)	
Mês	Mensal	Acumulada	Mensal	Acumulada	Real-Previsto	Desvio %	Real-Previsto	Desvio %
jan/24	12.120.661	12.120.661	11.914.645	11.914.645	-206.016	-1,73%	-206.016	-1,73%
fev/24	14.064.421	26.185.082	14.318.424	26.233.069	254.003	1,77%	47.987	0,18%
mar/24	17.784.125							
abr/24	16.805.439							
mai/24	17.170.398							
jun/24	17.116.672							
jul/24	17.868.916							
ago/24	17.835.788							
set/24	17.204.779							
out/24	16.845.662							
nov/24	16.692.238							
dez/24	16.491.487							

Quadro1. Comparação de aderência entre os valores de movimentação (ton.) estimados e reais em 2024 no Porto de Santos

Por ele, percebe-se que o desvio mensal se encontra na ordem de +/-1,7% (para mais ou para menos) o que minimiza o valor acumulado (0,18%)

Desta forma, ainda que diversos fatores influenciem a movimentação de um relevante porto multipropósito como o de Santos é possível, baseando-se em dados históricos e utilizando uma quantidade mínima de ciclos. realizar estimativas com boa taxa de sucesso desde que, sejam adotadas as ferramentas corretas e que elas estejam devidamente calibradas.

Sobre o autor: Dennis Caceta é Gerente de Projetos para Melhoria Contínua na GBM TECH & CONTROL. Engenheiro, atua há 25 anos em logística, sobretudo nos maiores portos brasileiros, realizando simulações e estudos que suportam as decisões de investimentos, em infra e em superestrutura.

Referências:

- Porto de Santos. Mensário Estatístico. Acessado em 15/04/2024.
 Disponível em: https://www.portodesantos.com.br/2024/02/23/acucar-se-destaca-na-pauta-de-exportacoes-pelo-porto-de-santos-em-janeiro/
- Análise de Séries Temporais. Acessado em 15/04/24. Disponível em: https://www.maxwell.vrac.puc-rio.br/4244/4244 5.PDF
- Métodos Estatísticos de Suavização Exponencial HOLT-WINTERS para previsão de demanda em uma empresa do setor metalmecânico. Revista Gestão Industrial. Acessado em 15/04/2024. Disponível em: https://periodicos.utfpr.edu.br/revistagi/article/view/1378